Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
N Engl J Med ; 382(18): 1708-1720, 2020 04 30.
Article in English | MEDLINE | ID: covidwho-1428982

ABSTRACT

BACKGROUND: Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. METHODS: We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. RESULTS: The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. CONCLUSIONS: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.).


Subject(s)
Betacoronavirus , Coronavirus Infections , Disease Outbreaks , Pandemics , Pneumonia, Viral , Adolescent , Adult , Aged , COVID-19 , Child , China/epidemiology , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Female , Fever/etiology , Humans , Male , Middle Aged , Patient Acuity , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Young Adult
2.
IEEE J Biomed Health Inform ; 25(7): 2353-2362, 2021 07.
Article in English | MEDLINE | ID: covidwho-1203809

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) has caused considerable morbidity and mortality, especially in patients with underlying health conditions. A precise prognostic tool to identify poor outcomes among such cases is desperately needed. METHODS: Total 400 COVID-19 patients with underlying health conditions were retrospectively recruited from 4 centers, including 54 dead cases (labeled as poor outcomes) and 346 patients discharged or hospitalized for at least 7 days since initial CT scan. Patients were allocated to a training set (n = 271), a test set (n = 68), and an external test set (n = 61). We proposed an initial CT-derived hybrid model by combining a 3D-ResNet10 based deep learning model and a quantitative 3D radiomics model to predict the probability of COVID-19 patients reaching poor outcome. The model performance was assessed by area under the receiver operating characteristic curve (AUC), survival analysis, and subgroup analysis. RESULTS: The hybrid model achieved AUCs of 0.876 (95% confidence interval: 0.752-0.999) and 0.864 (0.766-0.962) in test and external test sets, outperforming other models. The survival analysis verified the hybrid model as a significant risk factor for mortality (hazard ratio, 2.049 [1.462-2.871], P < 0.001) that could well stratify patients into high-risk and low-risk of reaching poor outcomes (P < 0.001). CONCLUSION: The hybrid model that combined deep learning and radiomics could accurately identify poor outcomes in COVID-19 patients with underlying health conditions from initial CT scans. The great risk stratification ability could help alert risk of death and allow for timely surveillance plans.


Subject(s)
COVID-19 , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , COVID-19/diagnostic imaging , COVID-19/mortality , Comorbidity , Female , Humans , Imaging, Three-Dimensional , Lung/diagnostic imaging , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2
3.
Chest ; 158(1): 97-105, 2020 07.
Article in English | MEDLINE | ID: covidwho-980155

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) has become a global health emergency. The cumulative number of new confirmed cases and deaths are still increasing out of China. Independent predicted factors associated with fatal outcomes remain uncertain. RESEARCH QUESTION: The goal of the current study was to investigate the potential risk factors associated with fatal outcomes from COVID-19 through a multivariate Cox regression analysis and a nomogram model. STUDY DESIGN AND METHODS: A retrospective cohort of 1,590 hospitalized patients with COVID-19 throughout China was established. The prognostic effects of variables, including clinical features and laboratory findings, were analyzed by using Kaplan-Meier methods and a Cox proportional hazards model. A prognostic nomogram was formulated to predict the survival of patients with COVID-19. RESULTS: In this nationwide cohort, nonsurvivors included a higher incidence of elderly people and subjects with coexisting chronic illness, dyspnea, and laboratory abnormalities on admission compared with survivors. Multivariate Cox regression analysis showed that age ≥ 75 years (hazard ratio [HR], 7.86; 95% CI, 2.44-25.35), age between 65 and 74 years (HR, 3.43; 95% CI, 1.24-9.5), coronary heart disease (HR, 4.28; 95% CI, 1.14-16.13), cerebrovascular disease (HR, 3.1; 95% CI, 1.07-8.94), dyspnea (HR, 3.96; 95% CI, 1.42-11), procalcitonin level > 0.5 ng/mL (HR, 8.72; 95% CI, 3.42-22.28), and aspartate aminotransferase level > 40 U/L (HR, 2.2; 95% CI, 1.1-6.73) were independent risk factors associated with fatal outcome. A nomogram was established based on the results of multivariate analysis. The internal bootstrap resampling approach suggested the nomogram has sufficient discriminatory power with a C-index of 0.91 (95% CI, 0.85-0.97). The calibration plots also showed good consistency between the prediction and the observation. INTERPRETATION: The proposed nomogram accurately predicted clinical outcomes of patients with COVID-19 based on individual characteristics. Earlier identification, more intensive surveillance, and appropriate therapy should be considered in patients at high risk.


Subject(s)
Aspartate Aminotransferases/blood , Cardiovascular Diseases/epidemiology , Coronavirus Infections , Dyspnea , Pandemics , Pneumonia, Viral , Procalcitonin/blood , Aged , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Correlation of Data , Dyspnea/epidemiology , Dyspnea/etiology , Female , Humans , Male , Nomograms , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Prognosis , Risk Assessment/methods , Risk Factors , SARS-CoV-2 , Survival Analysis
4.
Theranostics ; 10(16): 7231-7244, 2020.
Article in English | MEDLINE | ID: covidwho-640066

ABSTRACT

Rationale: Given the rapid spread of COVID-19, an updated risk-stratify prognostic tool could help clinicians identify the high-risk patients with worse prognoses. We aimed to develop a non-invasive and easy-to-use prognostic signature by chest CT to individually predict poor outcome (death, need for mechanical ventilation, or intensive care unit admission) in patients with COVID-19. Methods: From November 29, 2019 to February 19, 2020, a total of 492 patients with COVID-19 from four centers were retrospectively collected. Since different durations from symptom onsets to the first CT scanning might affect the prognostic model, we designated the 492 patients into two groups: 1) the early-phase group: CT scans were performed within one week after symptom onset (0-6 days, n = 317); and 2) the late-phase group: CT scans were performed one week later after symptom onset (≥7 days, n = 175). In each group, we divided patients into the primary cohort (n = 212 in the early-phase group, n = 139 in the late-phase group) and the external independent validation cohort (n = 105 in the early-phase group, n = 36 in the late-phase group) according to the centers. We built two separate radiomics models in the two patient groups. Firstly, we proposed an automatic segmentation method to extract lung volume for radiomics feature extraction. Secondly, we applied several image preprocessing procedures to increase the reproducibility of the radiomics features: 1) applied a low-pass Gaussian filter before voxel resampling to prevent aliasing; 2) conducted ComBat to harmonize radiomics features per scanner; 3) tested the stability of the features in the radiomics signature by several image transformations, such as rotating, translating, and growing/shrinking. Thirdly, we used least absolute shrinkage and selection operator (LASSO) to build the radiomics signature (RadScore). Afterward, we conducted a Fine-Gray competing risk regression to build the clinical model and the clinic-radiomics signature (CrrScore). Finally, performances of the three prognostic signatures (clinical model, RadScore, and CrrScore) were estimated from the two aspects: 1) cumulative poor outcome probability prediction; 2) 28-day poor outcome prediction. We also did stratified analyses to explore the potential association between the CrrScore and the poor outcomes regarding different age, type, and comorbidity subgroups. Results: In the early-phase group, the CrrScore showed the best performance in estimating poor outcome (C-index = 0.850), and predicting the probability of 28-day poor outcome (AUC = 0.862). In the late-phase group, the RadScore alone achieved similar performance to the CrrScore in predicting poor outcome (C-index = 0.885), and 28-day poor outcome probability (AUC = 0.976). Moreover, the RadScore in both groups successfully stratified patients with COVID-19 into low- or high-RadScore groups with significantly different survival time in the training and validation cohorts (all P < 0.05). The CrrScore in both groups can also significantly stratify patients with different prognoses regarding different age, type, and comorbidities subgroups in the combined cohorts (all P < 0.05). Conclusions: This research proposed a non-invasive and quantitative prognostic tool for predicting poor outcome in patients with COVID-19 based on CT imaging. Taking the insufficient medical recourse into account, our study might suggest that the chest CT radiomics signature of COVID-19 is more effective and ideal to predict poor outcome in the late-phase COVID-19 patients. For the early-phase patients, integrating radiomics signature with clinical risk factors can achieve a more accurate prediction of individual poor prognostic outcome, which enables appropriate management and surveillance of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Critical Care , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Models, Biological , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Prognosis , Radiographic Image Interpretation, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , Theranostic Nanomedicine , Tomography, X-Ray Computed/statistics & numerical data , Treatment Outcome
5.
Eur Respir J ; 55(6)2020 06.
Article in English | MEDLINE | ID: covidwho-622479

ABSTRACT

BACKGROUND: During the outbreak of coronavirus disease 2019 (COVID-19), consistent and considerable differences in disease severity and mortality rate of patients treated in Hubei province compared to those in other parts of China have been observed. We sought to compare the clinical characteristics and outcomes of patients being treated inside and outside Hubei province, and explore the factors underlying these differences. METHODS: Collaborating with the National Health Commission, we established a retrospective cohort to study hospitalised COVID-19 cases in China. Clinical characteristics, the rate of severe events and deaths, and the time to critical illness (invasive ventilation or intensive care unit admission or death) were compared between patients within and outside Hubei. The impact of Wuhan-related exposure (a presumed key factor that drove the severe situation in Hubei, as Wuhan is the epicentre as well the administrative centre of Hubei province) and the duration between symptom onset and admission on prognosis were also determined. RESULTS: At the data cut-off (31 January 2020), 1590 cases from 575 hospitals in 31 provincial administrative regions were collected (core cohort). The overall rate of severe cases and mortality was 16.0% and 3.2%, respectively. Patients in Hubei (predominantly with Wuhan-related exposure, 597 (92.3%) out of 647) were older (mean age 49.7 versus 44.9 years), had more cases with comorbidity (32.9% versus 19.7%), higher symptomatic burden, abnormal radiologic manifestations and, especially, a longer waiting time between symptom onset and admission (5.7 versus 4.5 days) compared with patients outside Hubei. Patients in Hubei (severe event rate 23.0% versus 11.1%, death rate 7.3% versus 0.3%, HR (95% CI) for critical illness 1.59 (1.05-2.41)) have a poorer prognosis compared with patients outside Hubei after adjusting for age and comorbidity. However, among patients outside Hubei, the duration from symptom onset to hospitalisation (mean 4.4 versus 4.7 days) and prognosis (HR (95%) 0.84 (0.40-1.80)) were similar between patients with or without Wuhan-related exposure. In the overall population, the waiting time, but neither treated in Hubei nor Wuhan-related exposure, remained an independent prognostic factor (HR (95%) 1.05 (1.01-1.08)). CONCLUSION: There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre. Future studies to determine the reason for delaying hospitalisation are warranted.


Subject(s)
Coronavirus Infections/mortality , Hospitalization , Pneumonia, Viral/mortality , Adult , Aged , Betacoronavirus , COVID-19 , Cardiovascular Diseases/epidemiology , China , Cohort Studies , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/diagnostic imaging , Cough/etiology , Diabetes Mellitus/epidemiology , Disease Outbreaks , Dyspnea/etiology , Fatigue/etiology , Female , Fever/etiology , Geography , Humans , Hypertension/epidemiology , Intensive Care Units/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pharyngitis/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnostic imaging , Prognosis , Proportional Hazards Models , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Time Factors , Time-to-Treatment/statistics & numerical data , Tomography, X-Ray Computed
6.
J Thorac Dis ; 12(5): 1811-1823, 2020 May.
Article in English | MEDLINE | ID: covidwho-596684

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a global pandemic disease, with more than 4 million cases and nearly 300,000 deaths. Little is known about COVID-19 in patients with chronic obstructive pulmonary disease (COPD). We aimed to evaluate the influence of preexisting COPD on the progress and outcomes of COVID-19. METHODS: This was a multicenter, retrospective, observational study. We enrolled 1,048 patients aged 40 years and above, including 50 patients with COPD and 998 patients without COPD, and with COVID-19 confirmed via high-throughput sequencing or real-time reverse transcription-polymerase chain reaction, between December 11, 2019 and February 20, 2020. We collected data of demographics, pathologic test results, radiologic imaging, and treatments. The primary outcomes were composite endpoints determined by admission to an intensive care unit, the use of mechanical ventilation, or death. RESULTS: Compared with patients who had COVID-19 but not COPD, those with COPD had higher rates of fatigue (56.0% vs. 40.2%), dyspnea (66.0% vs. 26.3%), diarrhea (16.0% vs. 3.6%), and unconsciousness (8.0% vs. 1.7%) and a significantly higher proportion of increased activated partial thromboplastin time (23.5% vs. 5.2%) and D-dimer (65.9% vs. 29.3%), as well as ground-glass opacities (77.6% vs. 60.3%), local patchy shadowing (61.2% vs. 41.4%), and interstitial abnormalities (51.0% vs. 19.8%) on chest computed tomography. Patients with COPD were more likely to develop bacterial or fungal coinfection (20.0% vs. 5.9%), acute respiratory distress syndrome (ARDS) (20.0% vs. 7.3%), septic shock (14.0% vs. 2.3%), or acute renal failure (12.0% vs. 1.3%). Patients with COPD and COVID-19 had a higher risk of reaching the composite endpoints [hazard ratio (HR): 2.17, 95% confidence interval (CI): 1.40-3.38; P=0.001] or death (HR: 2.28, 95% CI: 1.15-4.51; P=0.019), after adjustment. CONCLUSIONS: In this study, patients with COPD who developed COVID-19 showed a higher risk of admission to the intensive care unit, mechanical ventilation, or death.

7.
Eur Respir J ; 55(5)2020 05.
Article in English | MEDLINE | ID: covidwho-18269

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak is evolving rapidly worldwide. OBJECTIVE: To evaluate the risk of serious adverse outcomes in patients with COVID-19 by stratifying the comorbidity status. METHODS: We analysed data from 1590 laboratory confirmed hospitalised patients from 575 hospitals in 31 provinces/autonomous regions/provincial municipalities across mainland China between 11 December 2019 and 31 January 2020. We analysed the composite end-points, which consisted of admission to an intensive care unit, invasive ventilation or death. The risk of reaching the composite end-points was compared according to the presence and number of comorbidities. RESULTS: The mean age was 48.9 years and 686 (42.7%) patients were female. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached the composite end-points. 399 (25.1%) reported having at least one comorbidity. The most prevalent comorbidity was hypertension (16.9%), followed by diabetes (8.2%). 130 (8.2%) patients reported having two or more comorbidities. After adjusting for age and smoking status, COPD (HR (95% CI) 2.681 (1.424-5.048)), diabetes (1.59 (1.03-2.45)), hypertension (1.58 (1.07-2.32)) and malignancy (3.50 (1.60-7.64)) were risk factors of reaching the composite end-points. The hazard ratio (95% CI) was 1.79 (1.16-2.77) among patients with at least one comorbidity and 2.59 (1.61-4.17) among patients with two or more comorbidities. CONCLUSION: Among laboratory confirmed cases of COVID-19, patients with any comorbidity yielded poorer clinical outcomes than those without. A greater number of comorbidities also correlated with poorer clinical outcomes.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adult , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Prognosis , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL